PH5

SECTION A

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline \multirow[t]{12}{*}{1} \& \multirow[t]{4}{*}{(a)

(b)} \& \multirow[t]{2}{*}{(i)} \& $84.6 \times 10^{-9}[\mathrm{C}][$ for 4.7 nF$]$ (1) \&

\hline \& \& \& $73.8 \times 10^{-9}[\mathrm{C}][$ and 73.8 nC or clearly stated same for other 8.2 nF$]$ (1) \& 2

\hline \& \& \multirow[t]{2}{*}{(ii)} \& $E=\frac{1}{2} C V^{2} \quad$ or other equation used correctly or C total $=8.8 \mathrm{nF}$ (1) \&

\hline \& \& \& Answer $=1.43 \times 10^{-6}[\mathrm{~J}]$ ecf on Q but not $V(1)$ \& 2

\hline \& \multirow[t]{8}{*}{(b)} \& \multirow[t]{4}{*}{(i)} \& Points taken from the curve e.g. $Q_{0}=85 \mathrm{nC}$ and ($50 \mathrm{~ms}, 6 \mathrm{nC}$) (or $85 \mathrm{nC} / e=31 \mathrm{nC}$) (1) \&

\hline \& \& \& Values substituted correctly e.g. $6=85 e^{-0.05} / C R \quad$ or $C R=18 \mathrm{~ms}$ (1) \&

\hline \& \& \& | Answer $R=3.8 \times 10^{6}[\Omega]$ (1) |
| :--- |
| Award 1 mark for use of $\frac{\Delta Q}{t} t$ or $11 \mathrm{M} \Omega$ | \& 3

\hline \& \& \& | Alternative: |
| :--- |
| Tangent (1) Current (1) $R=3.8 \times 10^{-6}[\Omega]$ (1) | \&

\hline \& \& (ii) \& $I=\frac{V}{R}$ used or tangent drawn at $t=0(1)$ Answer $=4.7 \times 10^{-6}[\mathrm{~A}] \operatorname{ecf}(1)$ \& 2

\hline \& \& (iii) \& After $41 \pm 1 \mathrm{~ms} 10 \%$ charge left [or 90% discharged] Or other valid method e.g. taking logs and getting time (1) \&

\hline \& \& \& 83×10^{-3} [s] (first step can be implied) ecf (1) \& 2

\hline \& \& \& Question 1 Total \& [11]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline \multirow[t]{13}{*}{2} \& \multirow[t]{3}{*}{(a)} \& \multirow[t]{13}{*}{(i)
(ii)} \& 0 \& 1 \\
\hline \& \& \& \(\varphi=B \times l^{2}(1)\) \& \\
\hline \& \& \& Answer \(=4.32 \times 10^{-5}[\mathrm{~Wb}](1)\) \& 2 \\
\hline \& \multirow[t]{2}{*}{(b)} \& \& Change in flux or Faraday's law gives emf (1) \& \\
\hline \& \& \& \begin{tabular}{l}
Complete circuit or accept emf gives current (1) \\
Award 1 mark only for: \\
Current due to Faraday's law
\end{tabular} \& 2 \\
\hline \& \multirow[t]{3}{*}{(c)

(d)} \& \& Force / current / emf opposes the change (1) \&

\hline \& \& \& Force on PQ opposite to SR or the force is clockwise (1) \& 2

\hline \& \& \& $I=\frac{V}{R} \quad$ used (1) \&

\hline \& \& \& $$
A=\pi \frac{d^{2}}{4} \text { or } \pi \times 3^{2}\left(\times 10^{-6}\right) \text { i.e. } \pi r^{2} \text { used (1) }
$$ \&

\hline \& \& \& $$
R=\frac{\rho \times l}{A} \quad \text { used (1) }
$$ \&

\hline \& \& \& $$
V=\frac{\Delta N \phi}{\Delta t} \quad \text { used (1) }
$$ \&

\hline \& \& \& Answer $=0.19[\mathrm{~A}]$ ecf on ϕ and $\pi d^{2}(1)$ \& 5

\hline \& \& \& Question 2 Total \& [12]

\hline
\end{tabular}

Question		Marking details	Marks Available
3	(a)	Low A numbers do fusion (or arrow / label used) (1) High A numbers do fission (or arrow / label used) (1) Moving toward high $\mathrm{BE} /$ nucleon (around $\mathrm{Fe}-56$) or $\mathrm{Fe}-56$ is the most stable (or low PE/nucleon or accept work done by strong nuclear force) (1) Higher BE/nucleon is more stable (or low PE/nucleon more stable or more work done more stable) (1)	4
	(b)	$1.1 \pm 0.1 \mathrm{MeV}$ identified from graph for ${ }_{1}^{2} \mathrm{H}$ (1) $\times 2=2.2[\mathrm{MeV}] \operatorname{ecf}(1)$	2
	(c)	$7.6 \pm 0.2,8.4 \pm 0.2,8.7 \pm 0.2(1)$ Correct multipliers for each i.e. $235 \times 7.6,137 \times 8.4,96 \times 8.7$ (1) RHS - LHS or reverse (1)	
		Correct answer e.g. 201 MeV UNIT mark (1) [dependent on BE / A approximations]	4
		Question 3 Total	[10]

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline \multirow[t]{3}{*}{4} \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
360 \pm 10 \text { [minutes] }
\] \\
No [significant] drop after paper [no \(\alpha\)] (1) \\
[Small drop after aluminium] so small amount of \(\gamma\) being absorbed / most \(\gamma\) passes through i.e. could be \(\beta\) but some \(\gamma\) would be absorbed ok Or accept drop could be attributable to randomness of decay (1) \\
\(\gamma\) present because something gets through 3 mm Al or \(\gamma\) present because bigger drop after 10 cm Pb [than 3 mm Al] or \(\gamma\) present because only absorbed by the Pb (1)
\end{tabular} \& 1 \\
\hline \& (c) \& \[
\begin{aligned}
\& \text { Activity }=\frac{450}{0.006}=75000(1) \\
\& \text { Activity }=\lambda N \text { or } t_{\frac{1}{2}}=\frac{\ln 2}{\lambda} \text { used (1) } \\
\& N=2.34 \times 10^{9}(1)
\end{aligned}
\] \& \\
\hline \& \& \begin{tabular}{l}
Mass \(=99 \times 1.66 \times 10^{-27} \times 2.34 \times 10^{9}=3.84 \times 10^{-16} \mathrm{~kg}\) UNIT mark (1) ecf on \(A\) and \(t_{\frac{1}{2}}\) and \(N\) \\
Question 4 Total
\end{tabular} \& 4

[8]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline \multirow[t]{9}{*}{6} \& \multirow[t]{3}{*}{(a)

(b)} \& \& \&

\hline \& \& (i) \& + ve correct \& 1

\hline \& \& \& $V=E d \quad$ or $\quad V_{H}=B v d$ (1) \&

\hline \& \& \& $B e v=e E$ quoted \quad or $\quad d=5 \times 10^{-3}$ (1) \&

\hline \& \& \& Answer $=6.3 \times 10^{-6}[\mathrm{~V}](1)$ \& 3

\hline \& (c) \& \& Electrons do not move in the direction of the Hall field (or accept in the direction of the Hall voltage) \& 1

\hline \& (d) \& \& Correct use of $I=n A v e$ or $n=\frac{B I}{V_{H} t e}$ (or equiv equation) \&

\hline \& \& \& Answer $I=0.30 \times 10^{-3}[\mathrm{~A}](1)$ \& 2

\hline \& \& \& Question 6 Total \& [8]

\hline
\end{tabular}

SECTION B

SECTION C

Question			Marking details	Marks Available
9	(a)	(i)	Diagram showing either angle (accept θ) or baseline (1)	
			Attempt to use $b=r \theta$ and indication that θ must be in radians, Or attempt to use $b / 2=r \tan (\theta / 2)$ or equiv. Or by implication. (1)	
			$r=1.96 \times 10^{6}[\mathrm{~km}]$ or $1.92 \times 10^{6}[\mathrm{~km}]$ or convincing answer. (1)	3
		(ii)	Showed comet (far) beyond Moon. (1) But according to Aristotle nothing changes beyond Moon [yet comet was new - and went away].	2
	(b)	(i)	Diagram showing relevant areas (1) $r_{\mathrm{P}}, r_{\mathrm{A}}, v_{\mathrm{P}} \Delta t, v_{\mathrm{A}} \Delta t$ marked on diagram or meanings otherwise shown (1) $\left(\frac{1}{2}\right) r_{\mathrm{P}} \nu_{\mathrm{P}} \Delta t=\left(\frac{1}{2}\right) r_{\mathrm{A}} v_{\mathrm{A}} \Delta t$ or equivalent (1)	3
		(ii)	Use of $\frac{v_{\mathrm{P}}}{v_{\mathrm{A}}}=\frac{r_{\mathrm{A}}}{r_{P}}[=1.10]$ or by implication (1) 10% [increase] (1)	2
		(iii)	Explicit use of $\frac{m v^{2}}{r}$ (1) $\frac{v_{\mathrm{P}}}{v_{\mathrm{A}}}=\frac{r_{\mathrm{A}}}{r_{P}}$ used convincingly to give $\frac{F_{\mathrm{P}}}{F_{\mathrm{A}}}=\frac{r_{\mathrm{A}}^{2}}{r_{P}^{2}}$ or equiv. (1)	2
	(c)	(i)	Towards S or equivalent	1
		(ii)	Any 3 of ... - Sun at S , planet's path ABCDEF... - If time interval is shrunk, path becomes smooth - Equal areas swept out in equal times - Showed that for an elliptical path ... - ... force had to vary as inverse square of Sun-planet distance	3
		(iii)	Planets swirled in whirlpool (vortex) around the Sun (1) Any 2 of (2) - easy to understand - gave a mechanism - Newton didn't say what caused gravitation	
			Descartes' vortex theory can't be made to account for actual orbits [that is for Kepler's laws] or Newton's theory accounted for so many phenomena so economically [or similar point] (1)	4
			Question 9 Total	[20]

Question			Marking details	Marks Available
11	(a)	(i)	A/B/D	1
		(ii)	C	1
		(iii)	A	1
	(b)		$V=\frac{h c}{e \lambda}$ (must rearrange) (1) $6.2 \times 10^{4} \mathrm{~V}$ (must have valid unit) (1)	2
	(c)		Reduces scattering/ spreading accept 'ensures (X-rays) are all parallel / perpendicular [to the patient] (1) [leading to] sharper image / better resolution (1)	2
	(d)	(i)	Radio (waves)	1
		(ii)	Cause Hydrogen atoms to resonate (1) Flip alignment producing a magnetic field (1)	2
		(iii)	Not good for dense objects/bone/ Uncomfortable/ Claustrophobic/cannot be used with pacemakers/ expensive	1
	(e)	(i)	Depolarization of ventricles/ repolarisation of atria (1) Contraction of ventricles (1)	2
		(ii)	Repolarization of ventricles (1) Relaxation of ventricles/ ventricles return to normal (1) Do NOT accept ventricles expand	2
	(f)	(i)	Doppler	1
		(ii)	$\begin{aligned} & 0.4 \times \frac{1500}{500}=2 v(1) \\ & v=0.6\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \text { allow } 1 \text { mark only for } 1.2 \mathrm{~m} \mathrm{~s}^{-1}(1) \end{aligned}$	2
	(g)	(i)	Gamma $/ \gamma$	1
		(ii)	Very expensive/need a cyclotron / particle accelerator Ignore any reference to radiation dose	1
			Question 11 Total	[20]

