PH5 SECTION A

Question			Marking details	Marks Available
1	(a)	(i)	84.6×10^{-9} [C] [for 4.7 nF] (1) 73.8×10^{-9} [C][and 73.8 nC or clearly stated same for other 8.2 nF] (1)	2
		(ii)	$E = \frac{1}{2}CV^2$ or other equation used correctly or C total = 8.8 nF (1) Answer = 1.43×10^{-6} [J] ecf on Q but not $V(1)$	2
	(b)	(i)	Points taken from the curve e.g. $Q_0 = 85 \text{ nC}$ and $(50 \text{ ms}, 6 \text{ nC})$ (or $85 \text{ nC/}e = 31 \text{ nC}$) (1) Values substituted correctly e.g. $6 = 85e^{-0.05/}cR$ or $CR = 18 \text{ ms}$ (1)	
			Answer $R = 3.8 \times 10^6 \ [\Omega] \ (1)$ Award 1 mark for use of $\frac{\Delta Q}{t}$ t or 11 M Ω	3
			Alternative: Tangent (1) Current (1) $R = 3.8 \times 10^{-6} [\Omega]$ (1)	
		(ii)	$I = \frac{V}{R} \text{ used or tangent drawn at } t = 0 (1)$ $\text{Answer} = 4.7 \times 10^{-6} \text{ [A] ecf (1)}$	2
		(iii)	After 41 ± 1 ms 10% charge left [or 90% discharged] Or other valid method e.g. taking logs and getting time (1)	
			83×10^{-3} [s] (first step can be implied) ecf (1)	2
			Question 1 Total	[11]

Que	stion		Marking details	Marks Available
2	(a)	(i)	0	1
		(ii)	$\varphi = B \times l^2(1)$	
			Answer = 4.32×10^{-5} [Wb] (1)	2
	(b)		Change in flux or Faraday's law gives emf (1)	
			Complete circuit or accept emf gives current (1) Award 1 mark only for: Current due to Faraday's law	2
	(c)		Force / current / emf opposes the change (1)	
			Force on PQ opposite to SR or the force is clockwise (1)	2
	(d)		$I = \frac{V}{R} \text{used (1)}$	
			$A = \pi \frac{d^2}{4}$ or $\pi \times 3^2 (\times 10^{-6})$ i.e. π^2 used (1)	
			$R = \frac{\rho \times l}{A} \text{used (1)}$	
			$V = \frac{\Delta N \phi}{\Delta t} \text{used (1)}$	
			Answer = 0.19 [A] ecf on ϕ and πd^2 (1)	5
			Question 2 Total	[12]

Question		Marking details	Marks Available
3	(a)	Low A numbers do fusion (or arrow / label used) (1)	
		High A numbers do fission (or arrow / label used) (1)	
		Moving toward high BE/nucleon (around Fe-56) or Fe-56 is the most stable	
		(or low PE/nucleon or accept work done by strong nuclear force) (1)	
		Higher BE/nucleon is more stable (or low PE/nucleon more stable or more work done more stable) (1)	4
	(b)	1.1 ± 0.1 MeV identified from graph for $^{2}_{1}H(1)$	
		$\times 2 = 2.2 \text{ [MeV] ecf } (1)$	2
	(c)	$7.6 \pm 0.2, 8.4 \pm 0.2, 8.7 \pm 0.2$ (1)	
		Correct multipliers for each i.e. 235×7.6 , 137×8.4 , 96×8.7 (1)	
		RHS – LHS or reverse (1)	
		Correct answer e.g. 201 MeV UNIT mark (1) [dependent on BE/A approximations]	4
		Question 3 Total	[10]

Que	stion]	Marking details	Marks Available
4	(a)		360 ± 10 [minutes]	1
	<i>(b)</i>		No [significant] drop after paper [no α] (1) [Small drop after aluminium] so small amount of γ being absorbed / most γ passes through i.e. could be β but some γ would be absorbed ok Or accept drop could be attributable to randomness of decay (1) γ present because something gets through 3 mm Al or γ present because bigger drop after 10 cm Pb [than 3 mm Al] or γ present because only absorbed by the Pb (1)	3
	(c)		Activity = $\frac{450}{0.006}$ = 75 000 (1) Activity = λN or $t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ used (1) $N = 2.34 \times 10^9$ (1)	
			Mass = $99 \times 1.66 \times 10^{-27} \times 2.34 \times 10^{9} = 3.84 \times 10^{-16} \text{kg}$ UNIT mark (1) ecf on A and $t_{\frac{1}{2}}$ and N	4
			Question 4 Total	[8]

Que	stion		Marking details	Marks Available
5	(a)		$n = \frac{12\ 000}{1.8} (1)$ $B = \mu_0 nI = 0.019 [T] (1)$	2
	(b)	(i)	Either $Bev = \frac{mv^2}{r}$ or $Bev = m\omega^2 r$ (1) $v = \omega r$ and $\omega = 2\pi f$ quoted (1)	
			Clear algebra (if not immediately understandable then not clear) (1)	3
		(ii)	$f = \frac{3.3 \times 6 \times 1.6 \times 10^{-19}}{2\pi \times 12 \times 1.66 \times 10^{-27}} (1)$	
			Answer = 25.3×10^6 [Hz] (1)	2
		(iii)	$6e \times 14.5 \text{ kV} \times 24 = 2.09 \text{ MeV} $ (1)	
			Conversion to J i.e. look out for $\times 1.6 \times 10^{-19}$ (1)	
			Equating some related energy to $\frac{1}{2}mv^2$ e.g. $\frac{1}{2}mv^2=14500$ (1)	
			Answer = $5.8 \times 10^6 [\text{m s}^{-1}]$ (1) (ecf on these values only 2.4×10^6 and 4.1×10^6 which correspond to $q = 1e$ and 12 kicks respectively)	4
			Question 5 Total	[11]

Que	estion		Marking details	Marks Available
6	(a)	(i)	+ve correct voltmeter correct	1
	(b)		$V = Ed$ or $V_H = Bvd$ (1) $Bev = eE$ quoted or $d = 5 \times 10^{-3}$ (1) Answer = 6.3×10^{-6} [V] (1)	3
	(c)		Electrons do not move in the direction of the Hall field (or accept in the direction of the Hall voltage)	1
	(d)		Correct use of $I = nAve$ or $n = \frac{BI}{V_H te}$ (or equiv equation) (1) Answer $I = 0.30 \times 10^{-3}$ [A] (1)	2
			Question 6 Total	[8]

SECTION B

Que	stion	Marking details	Marks Available
7	(a)	KE given to water (1) Air resistance (1)	2
		Award 2 marks for: Water runs out before pressure drops to 1 atm	
		Accept PE given to water [even though water runs out in 1.6 m] Accept viscosity [or friction] of water	
		Accept KE given to bottle [only 1/10th of mass of ball]	
		Don't accept heat or sound	
	<i>(b)</i>	$v = -20\ln\left(1 - \frac{5.9}{1.5} \times 0.175\right) (1)$ $v = 23.3 [\text{m s}^{-1}] (1)$	2
	(c)	kg s ⁻¹ , m ² , kg m ⁻³ and m s ⁻¹ (0 or 1 unit correct 0 marks) (2 or 3 units correct 1 mark) (All 4 correct 2 marks) If all 4 units correct but algebra is incorrect then deduct 1 mark	2
	(d)	Rearranging i.e. $u = \frac{\Delta m/\Delta t}{\pi r^2 \rho}$ (1) Answer = 25 [m s ⁻¹] (1)	2
	(e)	Any 3 × (1) from:	
		Rocket equation assumes constant u	
		Volume increasing so pressure decreasing	
		Pressure is decreasing so <i>u</i> is decreasing Thrust is decreasing	3
		Timust is decreasing	,

Question		ı	Marking details	Marks Available
	(f)		$\Delta p = 6.8 \times 10^5 [\text{Pa}] (1)$ $u = \sqrt{\frac{2 \times 6.8 \times 10^5}{1000}} = 36.9 [\text{m s}^{-1}] (1)$	2
	(g)		mg - weight or gravitational force and $0.0107v^2$ - air resistance / drag accept skin / air friction (1)	
			Weight decreases (1) Air resistance increases (1)	3
	(h)		Squaring equation 6 or rearranging equation 5 (1) Convincing algebra (1)	2
	(i)	I	Fast process or no time for heat to flow or equivalent	1
		II	The gas does work so internal energy decreases $\mathbf{Or} \ \Delta U = -W$	1
			Question 7 Total	[20]

SECTION C

Que	stion		Marking details	Marks Available
8	(a)		$\omega L = \frac{1}{\omega C} \text{or} f = \frac{1}{2\pi\sqrt{LC}}(1)$ $= \frac{1}{2\pi\sqrt{0.022 \times 15 \times 10^{-9}}} \text{or} f = \frac{1}{2\pi\sqrt{0.022 \times 90 \times 10^{-9}}}(1)$ $8.761 \text{ [Hz]} \text{and} 3.577 \text{ [Hz]}(1)$	3
	(b)	(ii)	$Q = \frac{2\pi fL}{R} \text{or} Q = \frac{1}{R} \sqrt{\frac{L}{C}} (1)$ Correct matching of f and R or R and $C(1)$ $61 (1)$ $10 (1)$ $Z = \sqrt{\left(\omega L - \frac{1}{\omega C}\right)^2 + R^2} \text{used} (1)$	4
			$I = \frac{3.2}{Z}$ i.e. $I = \frac{V}{Z}$ used (1) 1.7 [mA] (1)	3

Qu	estion	1	Marking details	Marks Available
8	(c)	(i)	Current A 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 5000 7000 9000 11000 13000 15000 Frequency / Hz Shapes similar and asymptotic to original (1) 20 Ω with higher peak and 50Ω with lower (implied if not labelled) (1) 20 Ω with peak current of 160mA (1) 50 Ω with peak current of 64mA (1)	4
		(ii)	ωL increases (wrt f) or graph (1) $\frac{1}{\omega C}$ decreases (wrt f) (1) low frequency behaviour explained e.g. X_C very large, Z large at low freq (1) $\frac{1}{\omega C}$ decreases (wrt f) (1	6
			$I \propto \frac{1}{Z}$ or equivalent equation etc. (1)	6
			Question 8 Total	[20]

Questi	on	Marking details	Marks Available
9 ((a) (1	Diagram showing either angle (accept θ) or baseline (1)	
		Attempt to use $b = r\theta$ and indication that θ must be in radians, Or attempt to use $b/2 = r \tan(\theta/2)$ or equiv. Or by implication. (1)	
		$r = 1.96 \times 10^6$ [km] or 1.92×10^6 [km] or convincing answer. (1)	3
	(i	Showed comet (far) beyond Moon. (1) But according to Aristotle nothing changes beyond Moon [yet comet was new – and went away]. (1)	2
(<i>b)</i> (Diagram showing relevant areas (1) r_P , r_A , $v_P \Delta t$, $v_A \Delta t$ marked on diagram or meanings otherwise shown	
		(1) $ (\frac{1}{2})r_{P}v_{P}\Delta t = (\frac{1}{2})r_{A}v_{A}\Delta t \text{ or equivalent (1)} $	3
	(i	Use of $\frac{v_p}{v_A} = \frac{r_A}{r_P}$ [= 1.10] or by implication (1)	2
		10 % [increase] (1)	
	(iii	Explicit use of $\frac{mv^2}{r}$ (1)	
		$\frac{v_{\rm p}}{v_{\rm A}} = \frac{r_{\rm A}}{r_{\rm p}}$ used convincingly to give $\frac{F_{\rm p}}{F_{\rm A}} = \frac{r_{\rm A}^2}{r_{\rm p}^2}$ or equiv. (1)	2
(6	(c) (1) Towards S or equivalent	1
	(i	 Any 3 of Sun at S, planet's path ABCDEF If time interval is shrunk, path becomes smooth Equal areas swept out in equal times 	
		 Showed that for an elliptical path force had to vary as inverse square of Sun-planet distance 	3
	(ii		
		Any 2 of (2) • easy to understand • gave a <i>mechanism</i>	
		• Newton didn't say what <i>caused</i> gravitation	
		Descartes' vortex theory can't be made to account for actual orbits [that is for Kepler's laws] or Newton's theory accounted for so many phenomena so economically [or similar point] (1)	4
		Question 9 Total	[20]

Question				Marking details	Marks Available
10	(a)	(i)		Strong (covalent) bonds between ions in structure. Accept molecules arranged irregularly or amorphous structure present (1) [No dislocations present] so no slip (accept no movement of dislocations). Accept different sized atoms seize up the structure (1) Do not accept 'untangle'.	2
		(ii)		Scratches (on surface) weaken material or break surface bonds. Scratches have stress concentrations at their tips- can be awarded from diagram. Cracks propagate through material. Correct direction of bending is to open the crack [ANY 2] (credit well annotated diagrams) [Local] stress cannot be relieved by slip / plastic flow/ dislocation movement.	2
		(iii)		Compression (1]) [Do not accept 'stress] More difficult for cracks to develop/ widen/ propagate (1)	2
	(b)	(i)		Gradient shown = 80GPa e.g. $\frac{800 \times 10^6}{0.01} \text{seen.}$	1
		(ii)		Area under graph = $[\frac{1}{2} \times 0.01 \times 800 \times 10^6 + \frac{1}{2} \times 0.08 \times 100 \times 10^6 + 0.08 \times 800 \times 10^6] = 72 \text{ [MJ m}^{-3}] (1)$ Volume = $\pi \times (1.25 \times 10^{-3})^2 \times 2.5 = 12.3 \times 10^{-6} \text{ [m}^3] (1)$ Work done = $72 \times 10^6 \times 12.3 \times 10^{-6} = 884 \text{ [J] (1) (ecf on both area and volume)}.$	3
		(iii)		Initial straight line of same gradient. (1) Yield point at 1 000 MPa. (1) Linear plastic region of small slope (accept zero slope) stopping at 5% strain. (1)	3
		(iv)	(I)	Creep: [Gradual/slow/Over time] AND [extension/stretching/deformity or increase in strain] (1) (under a constant load). Necking: Localised (or reference to 'section' or 'region') thinning (of structure/material before breaking- accept diagram) (1)	2
			(II)	Same shaped curve but steeper gradient (1) Stopped at 15% and $t < 400$ hrs (approx.) (1)	2
		(v)		Repeated bending, stretching or hammering of metal alloy (1) Dislocations become tangled / traffic jam effect or new dislocations created (1) Stopping each other from moving (or inhibiting plastic deformation or collect at grain boundaries) (1)	3
				Question 10 Total	[20]

Question			Marking details	Marks Available
11	(a)	(i) (ii) (iii)	A/B/D C A	1 1 1
	(b)		$V = \frac{hc}{e\lambda} \text{ (must rearrange) (1)}$ $6.2 \times 10^4 \text{ V (must have valid unit) (1)}$	2
	(c)		Reduces scattering/ spreading accept 'ensures (X-rays) are all parallel / perpendicular [to the patient] (1) [leading to] sharper image / better resolution (1)	2
	(d)	(i)	Radio (waves)	1
		(ii)	Cause Hydrogen atoms to resonate (1) Flip alignment producing a magnetic field (1)	2
		(iii)	Not good for dense objects/bone/ Uncomfortable/ Claustrophobic/cannot be used with pacemakers/ expensive	1
	(e)	(i)	Depolarization of ventricles/ repolarisation of atria (1) Contraction of ventricles (1)	2
		(ii)	Repolarization of ventricles (1) Relaxation of ventricles/ ventricles return to normal (1) Do NOT accept ventricles expand	2
	(f)	(i)	Doppler	1
		(ii)	$0.4 \times \frac{1500}{500} = 2v (1)$ $v = 0.6 [\text{m s}^{-1}] \text{ allow 1 mark only for 1.2 m s}^{-1} (1)$	2
	(g)	(i)	Gamma /γ	1
		(ii)	Very expensive/need a cyclotron / particle accelerator Ignore any reference to radiation dose Question 11 Total	1 [20]

Question			Marking details	Marks Available
12	(a)		Any 3 of: More than one isotope of uranium Only U-235 fissile / U-238 unsuitable for fission Need higher concentration of U-235	
			Get rid of U-238 since neutron absorber/'sink'	3
	(b)		More fissile nuclei obtained (1) U-238 captures neutrons or decays to plutonium 239 via beta (1)	2
	(c)		Any 2 of: More easily controllable or no chain reaction Hydrogen & deuterium more plentiful / more easily sourced / can be extracted from sea water No [long term] radioactive products. More energy released per fusion	2
	(d)	(i)	Overcome electrostatic repulsion /forces (1) Needs high / enough (K)E (or velocity, speed) of deuterium/tritium (1) KE proportional to temperature or only tail end of distribution (1) with high enough energy	3

Question		Marking details	Marks Available
	(ii)	$n = or \ge \frac{3.5 \times 10^{28}}{0.9 \times 120000000} (1)$ Multiplying by $2.5 \times 1.67 \times 10^{-27} (1)$	
		Answer = 1.35×10^{-6} [kg m ⁻³] (1)	3
(e)		$9 \times 10^{16} (1)$	
		$\times 2 = 18 \times 10^{16} [J] (1)$	2
(f)		Coal - any 2 of : acid rain, CO ₂ , non-renewable, lasts hundreds of years, increase asthma, damage to buildings/trees/etc, global warming (1)	
		Natural gas - any 2 of: less acid rain, CO ₂ , non-renewable lasts tens or hundreds of years, global warming (1)	
		Biomass - any 2 of: acid rain, CO ₂ neutral (roughly), renewable/lasts millions of years, increase asthma, damage to buildings/trees/etc, (roughly) no global warming, large land area needed (1)	
		Uranium-235 any 2 of : no acid rain, no CO ₂ , lasts thousands of years, no increase asthma, no damage to buildings/trees/etc, (little or) no global warming, leak or explosion risk, disposal of waste, hazardous waste, large energy output per kg of fuel (1)	
		Wind any 2 of: no acid rain, no CO ₂ , renewable/lasts millions of years, no increase asthma, no damage to buildings/trees/etc, no global warming, low power, weather dependent/unreliable, large area (1)	_
		(ugly/kills birds/noisy/disrupts TV signals OK but only 1 point max for these)	5
		NOTE: No marks for cheap/expensive - eliminated in stem!!	
		Question 12 Total	[20]